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Icosahedral crystals: neutron diffraction tells you where 
the atoms are 
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Abstract. Neutron diffraction data were obtained from a single-phase icosahedral powder 
of the system AI,,Si,Mn,, and its modification by isomorphous substitution on the Mn sites. 
Amplitudes and phase differencesof the partial structure factors ( F A ] ,  FMn) were determined. 
From their Q--dependences within a strip-projection approach, phases were reconstructed. 
Atomic densities were then calculated in the physical space and in the six-dimensional 
periodic lattice, resultingin the first experimentally deduced decoration of the quasi-periodic 
network. The Mackay icosahedron no longer appears as the necessary basic structural unit. 
In six dimensions the structure has a simple CsCI-like space-group symmetry. 

1. Introduction 

Quasi-periodic structures have been shown to be derivable from what is now called the 
strip-projection method (SPM) [ 1-71. They are also conceptually equivalent to three- 
dimensional Penrose tiling (~DPT)  [8], which is a structure known for more than a decade 
to exhibit five-fold symmetries and Bragg peak diffraction. The second stage necessary 
in order to specify the structure of a quasi-crystal is the ‘decoration’ of the geometrical 
framework. The decoration is the rule for placing atoms within the rigid geometry. 
Different models have been proposed to decorate a 3DPT [9-111, but to date there has 
been no atomic decoration scheme directly deduced from diffraction data, beyond the 
determination of partial pair distribution functions [12]. 

This is indeed intrinsically more difficult for a quasi-crystal than for a crystal. A 
perfect quasi-periodic structure, without any disorder, still has an infinite number of sites 
which are not exactly equivalent. One should have expected that the whole apparatus of 
crystallography and diffraction patterns could be applicable, in 613 space, to the 6D 
periodiccrystal from which the 3~ quasi-crystal is generatedusing the SPM. Unfortunately 
there are some conceptual and/or practical difficulties to be overcome related to the 
fairly low level of information that can be extracted from the classical diffraction patterns 
of quasi-crystals: a very small number of the diffracted features can really be measured 
and each of them contains mixed contributions from the structure factor of the 6~ Bravais 
lattice, the chemical decoration of the projected structure in 3~ and the Fourier transform 
of the strip cut in 6 ~ .  

A step towards the separation of these different contributions to the diffracted 
intensity was made by using contrast variation in neutron diffraction experiments [ 13- 
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161, which allowed one to determine amplitudes and phase differences of the partial 
structure factors FAI and FM, in A1-Mn icosahedral phases. 

The present work intends to proceed further in achieving this separation and reports 
on a phase reconstruction procedure for FA, and F,,, along with calculations of the 
partial atomic densities. 

2. Experiment and data analysis 

The use of neutrons is particularly attractive in studying the atomic structure of A1-Mn 
compounds, because the neutron scattering length of Mn is negative (bMn = 
-0.373 x 10-I2cm) and because Mn atoms are expected to be substituted by Cr 
or Fe, which are positive neutron scatterers (bcr = +0.364 x cm; bFe = 
+0.954 x cm), without too much disturbance of the structure [17]. In fact, it has 
been shown [ 181 that the substitution of Cr or Fe for Mn is not perfectly isomorphous in 
icosahedral phases. In other words, even if the phases containing Cr or Fe remain 
apparently icosahedral according to electron diffraction criteria, they might have atomic 
decorations different from that of Al-( pure Mn) compounds. Fortunately enough, the 
substitution of an equi-atomic FeCr mixture (the so-called 0-phase) for Mn happened 
to be isomorphous and random [12,14,15]. 

Let the composition of the investigated quasi-crystalline phase be described by the 
formula Alx(Mnl-c~c)l-x in which 0 stands for the equi-atomic FeCr substitute. The 
average coherent scattering length bT of the Mn,-pC mixture is given by 

b T  = (1 - C ) ~ M , ,  + Cb, 

(with bMn = -0.373 x cm). Thus amodulation of the 
total structure factor Fc(Q)  is obtained as a function of the substitution rate c, for each 
measured value of the scattering vector Q. Then, the contributions from the aluminium 
and transition-metal atoms to the diffracted intensities can be separated and the partial 
structure factor calculated [14, 191. 

Quasi-crystalline phases of the AI-Mn system can be produced by melt spinning as 
described in detail elsewhere [13,20]. The icosahedral phase (IP) currently forms in 
alloys with Mn concentration ranging from 14 to 22%, in coexistence with a residual FCC 
A1 phase whose volume fraction is minimised for a nominal composition of the quenched 
alloys corresponding to Al,,Mn,,. Despite the stoichiometry of the IP being apparently 
in the vicinity of A14Mn, it is far from easy to produce samples of pure IP at or near this 
ideal composition. The decagonal phase (DP) then forms in competition with the IP and 
can even be obtained alone by reducing the solidification rate slightly [21]. However, 
the formation of the IP in AI-Mn alloys has been shown to be favoured by the addition 
of silicon, and pure IP can even be produced if the silicon content reaches about 5 
at. % [19]. Consequently, the neutron diffraction data analysed in this paper were 
measured with five samples of the system AlT4Si5(Mnl -cac)21 (nominal composition) 
withc = 0,0.140,O.362,0.696and1,correspondingtobT = -0.373, -0.228,0, +0.3445 
( = bA,) and +0.658 (in cm), respectively. According to their electron diffraction 
patterns and electron micrographs the quenched alloys appeared as single icosahedral 
phases except for AlT4SiSMn,, (c = 0) in which the presence of about 3% of the hexagonal 
/3-phase cannot be avoided. For the purpose of neutron diffraction measurements, these 
samples were finely powdered and packed into a cylindrical vanadium can (diameter 
8 mm, height 50 mm). The neutron data were collected at the High Flux Reactor facilities 

cm and b, = +0.658 x 
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of the Institut Laue-Langevin (ILL, Grenoble). High-resolution powder diffraction 
patterns were obtained using the new D ~ B  two-axis diffractometer. Its bank of 64 
counters, at intervals of 2.5', covers an angular range 20 = 160' and can be moved by 
steps of 0.020'. This instrument is intended to be a very-high-resolution, high-intensity 
powder diffractometer equipped with 5' Soller collimators both in the primary beam 
and in front of the 64 detectors [22]. Diffraction peaks measured with the icosahedral 
phase do not require the full resolution of the machine and these materials are rather poor 
scatterers. Thus, theincident Soller collimatorswereremoved, reducing theresolution to 
about AQ/Q = 5 X but with a gain of a factor of about 7 in neutron flux. The 
wavelength of the monochromatised neutron beam (A = 1.5947 A) and the angular 
distances between elements of the detector bank were calibrated with an yttrium iron 
garnet (YIG) and an NBS A1203 standard. Each measured diffraction pattern was 
accumulated over a period of about 15 h.  The five diffraction patterns measured at room 
temperature, in a Q-range of 8 A-', are shown in figure 1. The patterns were analysed, 
as fully explained elsewhere [ 13-15], using the maximum-likelihood fitting procedure 
usually applied to Poisson diffraction spectra [23] to obtain intensities, positions and 
widths of the peaks, with standard deviations on these quantities. The absence of 
significant shifts in peak positions due to the chemical substitutions of a-FeCr for 
Mn was checked carefully. These positions, reconverted into scattering vectors Q = 
(4n/A) sin 8,  were then indexed according to 

which is expected if the structure is assumed to exhibit icosahedral symmetries [24]. In 
equation (1) (\I takes any even value and M is an integer which conforms to the limits 
- N / z  < M < N / z  [24]; z = 2 cos 36" = (1 + d 5 ) / 2  = 1.618034. . . is the goldenmean. 
The best fit of equation (1) to data led to a = 6.497 A within a relative accuracy better 
than 3 x lop3 for the 60 diffraction peaks measured with each sample. It has been shown 
[24] that such a sequence of positions is equivalent to a six-integer indexing h/h' k/k'  
1/1' related to a primitive cubic lattice in six dimensions with a as the lattice parameter. 
These six indices are related to N and M according to 

N = h2  + h'* + k 2  + k t 2  + l2  + 1 1 2  

M = h" + kl2 + 1 1 2  + 2(hh' + kk' + 11') 

and must conform to well defined parity and scaling properties [24]. The six-index 
notation, however, is merely a shorthand for indexing irrational numbers of the form 
h + h 'z .  The use of a cubic basis [24] to represent wavevectors, instead of an icosahedral 
one, allows one to develop most of the geometry without recourse to six dimensions but, 
of course, hides the icosahedral symmetry somewhat. 

Intensities of the diffraction peaks were carefully corrected for absorption, Lorentz 
factor and Debye-Waller thermal effects (a Debye temperature equal to 380 K was 
determined from the temperature dependence of some of the strongest diffraction 
peaks). Peak positional powder data can be reconverted into 3~ diffraction Q-vectors by 
distributing the total integrated intensities over the corresponding set of equivalent 
reflections [14, 151 (indexing and multiplicity being accounted for). The Z(Q) intensities 
may be written as 
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Figure 1. High-resolution neutron diffraction patterns of the icosahedral phase A174Si5TMZ, 
with changing contrast b, on the TM sites. The positive value b, = +0.658 x 10-12cm 
reproduces the contrast between A1 and Mn when observed with x-rays. Comparing 
patterns bT = 0 and bT = +0.658 X cm shows that x-ray patterns are mainly influenced 
by AI scattering. For phase-shift reasons, the information contained in the diffraction 
patterns happens to be the greatest for the largest negative value of the scattering length 
on the transition-metal sites. Quite a large amount of 'diffuse scattering' also shows up, 
especially below the Bragg diffraction for the pattern br = 0, which measures scattering 
from the aluminium subnetwork alone. 

where the b stand for the neutron scattering lengths of aluminium and average transition- 
metal atoms respectively, and the Fa re  the partial structure factors defined by 
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An equivalent expression for Z(Q) is then 

I@> = ~ ~ I I F A I I ’  + ~ ? / F T I ’  + ~ ~ A I ~ T I F A I /  IFTI COS(AQ)) ( 5 )  
in which A q  is the phase difference between FA, and FT. Obviously, equation ( 5 )  contains 
IFAII, lFTl and IAq  1 as three unknown quantities, which can be determined, for each Q 
reflection, by measuring at least three independent intensitiesZ(Q, bT) withthree samples 
that are strictly identical except for their neutron scattering contrast bT on the transition- 
metal (TM) sites. Actually, more than three contrast values are required due to the 
necessary rescaling procedure of the diffraction patterns with respect to each other 
[14,25]. Equations (3) to ( 5 )  obviously are only valid for true binary A~-TM alloys, or 
pseudo-binary alloys, in which TM is a random mixture of transition metals (isomorphous 
substitution). The question remains of what to do with the 5 at.% Si included in the 
icosahedral phases. In the present work, it has been chosen, somewhat arbitrarily, to 
treat A1 and Si atoms as a single (average) atomic species. Such an assumption is 
equivalent to considering that AI and Si atoms are randomly distributed on the sites of 
one subnetwork with an average scattering length 

(b)Al,s, = CAIb,q + CSlbS, = 0.3493 (in lo-’* Cm) 

only 1% larger than bAl. If, on the contrary, a maximum chemical order were assumed, 
such that Si atoms would have only Si-A1 bonds, the intensity diffracted by A1 and Si 
atoms altogether would be proportional to 

c i , b i l  f 2CAICSlbAlb~, = 0.07573 

which is equivalent to an average scattering length of 0.3483. Obviously, the two cases, 
and any other case in between, cannot be experimentally distinguished and the problem 
can reasonably be treated within the ‘binary alloy’ approximation. To go further requires 
a specific study of the Si positions, using for instance contrast changes produced with Ge 
substitution. This is far from easy and has not been carried out so far. 

The raw product of the neutron diffraction data with contrast variation is then 
the triple set IFAl(Q)I, IFT@)], IAQ)(Q)I. As already observed with other icosahedral 
alloys [14] the phase differences AQ) measured in the present work happened to be all 
equal to 0 or JG, within experimental accuracy, which suggests centrosymmetric prop- 
erties of the structure. As a consequence, the measured partial structure factors FA, and 
FT of the icosahedral phase can be expressed by pairs of real numbers, either of the same 
or of opposite signs, multiplied by a common phase factor exp(iQ). However, within a 
given pair, which of FAI or FT is positive or negative and their common phase O(Q)  
cannot be deduced from diffraction data and a phase reconstruction procedure must be 
discovered if one wishes to proceed beyond the usual Patterson function analysis [26], 
This can be obtained as a consequence of 3D quasi-periodicstructures having translational 
symmetries when described in a higher-dimensional space, owing to the fact that the 
icosahedral point group is compatible with translational space groups in six dimensions 
though rejected by any 3D space group. Such a scheme can be explained within the strip- 
projection approach. 

In the formulation of the strip-projection method one starts with a 6~ primitive cubic 
lattice in R6 which is projected onto two orthogonal well chosen 3~ subspaces R311 and 
R31. The quasi-periodic crystal consists in projection onto R3,1 of those points of the 6~ 
cubic lattice that are within a strip S6 extending infinitely parallel to R31/ but having a 
finite cross section A3i in R3L called the acceptance function. In its simplest description 
A31 is equal to 1 inside the strip and 0 outside. The 6D diffraction pattern of the infinite 
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real 6~ cubic lattice would be a 6~ cubic distribution of Dirac functions at vectors Q6. 
The 6D diffraction pattern of the strip S6 would also be a 6~ distribution of extended 
spots centred at Q6, still Dirac-like when scanned at Q;I-vectors in the 3D reciprocal space 
associated with R311, but broadened in the orthogonal 3D reciprocal subspace associated 
with R3- due to convolution with the Fourier transform G(Q,) of the acceptance function 
A3,(Q, and Ql are the projections of Q6 into the two 3D reciprocal subspaces Rt, and 
R;l associated with R3, and R,ll, respectively). In summary, we have the following: 

(i) The density of the 6~ primitive cubic lattice is taken equal to p(r6) = 6(r6) where 
6(r6) stands for a set of Dirac density peaks sited at the vertices of the 6~ primitive cubic 
lattice. 

(ii) The density within the strip can then be written as 6(r6)'A3,(rL), with rl the 
component of r6 in R3,. 

(iii) The diffraction pattern of the strip is described by the Fourier transform (FT) 
8(&) * G(Q,), in which 8(Q6) is the set of Dirac peaks transformed from 6(r6)  and * 
stands for a convolution product. 

(iv) The diffraction features are investigated only in the observation reciprocal space 
R3*iI, at each Qll-value corresponding to a single given Q6 (due to irrationality of the 
projection). Thus the scattering vectors IQ1 = (4n/A) sin 0 have to be identified with Qll 
in equations (3) to ( 5 )  and the diffracted intensities are the square of the modulus of 
S(Q6) * G(Q,>. 

(v) If these S(QI) . G(Q,) diffraction-deduced structure factors are directly Fourier- 
transformed, one gets 6(r6)  *A3L(r,), that is the set of Dirac density peaks of the infinite 
primitive cubic lattice 'decorated' by the acceptance function A,_. 

(vi) Finally, the atomic density in our 3~ physical space can be obtained by cutting 

All these statements are strictly valid for a monatomic system only but contrast 
variations, as used in the present work, allow one to calculate the partial structure factors 
for A1 and TM atoms separately, as will now be explained, and thus to treat the binary 
problem as two independent monatomic systems. In such a formulation, the partial 
structure factors FA, and F T  actually deteImined in 3D can be expressed, for each A1 or 
TM site, as 

* A 3 , ( r ~ )  with R311. 

in which 6 and G still stand for the structure factors of the infinite periodic structure in 
R6 and the FT of the pertinent partial acceptance functions in R3, respectively. Let us 
first analyse the data corresponding to FT(Qll) = 6T(Q6)GT(QL), i.e. the partial structure 
factor of the transition-metal atom subnetwork. The measured amplitudes IFT/ of this 
partial structure factor, as a function of Q, [24] 

2n z ( N z  - M )  
e, =,i 2(2 + z) 

go to zero for e,-values of about 0.7 x 2n /a  (where a = 6.497 A is still the lattice 
parameter of the 6~ cubic lattice). The A,, acceptance function can be any hypersurface 
in R31 but has to be invariant under the 120operations of the m%point-group symmetry. 
In particular, m% has a centre of inversion which imposes GT(Q,), the FT of the 
acceptance functions A,,, to be positive or negative real numbers. Additionally, &(e,) 
is the structure factor of a 6~ primitive cubic lattice and, as such, is also a real number. 
Finally, FT(Qll), as the product 6T(Q6)*GT(Ql), is also a real number to which it is 
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reasonable to assign positive and negative values respectively when Q, is smaller and 
larger than 0.7 x 2n /a  (within the measured range of Q,-values). Now, phases of the 
FAl(Qii) partial structure factors can also be very easily reconstructed since diffraction 
data give phase differences between FT and FAI equal to 0 or n only. The resulting 
FA,(QJ and FT(Q1)  with their ‘reconstructed’ phases are represented in figure 2 and 
compared to G( Q,) functions corresponding to spherical acceptance functions. The 
numerical values and ( N ,  M )  indexing are also gathered in table 1. They can now be used 
straightforwardly to derive the structure. The spherical approximation forA3,, actually, 
will not be used in this derivation and the representation shown in figure 2 is just for the 
sake of illustration and to support the idea that FT(Q1) turns from positive to negative 
values when passing through zero at Q, = 0.7 x 2n/a.  

0.6 

0.2 

0 

c 

Figure 2. Q,-dependences of the AI and Mn partial structure factors of the quasi-crystalline 
structure: crosses, data; full curve, best fits in the sphere approximation. Phases have been 
‘reconstructed’ as explained in the text. Radii R, of the spherical acceptance functions are 
given. They are to be compared to the radius 1 . 0 1 3 ~  of a sphere that would have the same 
volume as the triacontahedron obtained by projection into R3L of the 6D cubic elementary 
cell. &(AI) and R,(TM) are in a ratio roughly equal to t. 

3. The structure of the AI,,Si,Mn,, quasi-crystal 

The first obvious procedure to generate the real atomic structure is to Fourier-transform 
the structure factors according to 

P T ( ~ )  = FT<QII)  ex~(iQii .r> P A I ( ~ )  = X F~i(Qii) ex~(iQii r )  (7)  
Qii Q i i  

in which pT and pA1 are the partial 3D atomic densities at r .  In particular, the average 
partial densities should be given by 

PT = X P T ( ~ >  = FT(QII  = 0 )  PAI = FAI<Q~~ = 0). 
As 
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can be equal to zero only with N = M = 0, FT and FA, for Qll = 0 are also given by the 
extrapolations of FT(Ql) and FAl(Q,) to Q, = 0, which according to data shown in 
figure 2 and table 1 gives 

FAl(o)/FT(0) = P A I / P T  = 4.23. 
Thus the ideal composition of the icosahedral phase would be A1,,23Mn or A180,9Mn,9,,. 
The nominal composition of the measured system being Al,,Si,Mn,, , this implies that 
atomic sites may be occupied by different chemical species and/or that the structure 
could be defective. It could be due also to changes in the composition as a result of the 
quenchingprocedure. Atomiccoordinates, occupation fractions within each subnetwork 
and distances from the origin are given in tables 2 and 3 for a few of the many calculated 
atomic positions. Atomic density maps representing 2D cuts of pT(r)  and pAI(r) are also 
shown in figure 3. A careful examination of these results allows interesting conclusions 
to be drawn regarding the atomic structure. The manganese atoms are obviously at or 

Table 1. Partial structure factors for A1 and Mn subnetworks of an AI-Mn quasi-crystal 
deduced from neutron diffraction data with contrast variation. Phases have been ‘recon- 
structed’ as explained in the text. 

2 1 0.707 
4 4 0.743 
6 9 0.397 
8 12 0.461 

10 13 0.843 
12 16 0.874 
14 21 0.610 
16 24 0.650 
IS  29 0.167 
20 32 0.282 
22 33 0.762 
24 36 0.795 
26 41 0.490 
28 44 0.539 
30 ‘45 0.t288 
32 48 0.918 
34 53 0.699 
36 56 0.710 
38 61 0.331 
40 64 0.401 
42 6.5 0.814 
44 68 0.844 
46 73 0.565 
48 76 0.610 
50 77 0.933 
52 84 0.175 
54 8.5 0.729 
56 88 0.762 
58 93 0.43.5 
60 96 0.491 
62 97 0.862 

+0,106 
0 

-0.209 
-0.220 
+0.071 
+0.107 
-0.402 
-0.360 
+2.134 
+1.390 
t0.020 
-0. i83 
-0.180 
-0.276 
+0.121 
1-0.137 
-0,353 
-0.080 
+0.267 
+0.160 
t0.183 
-0.143 
-0.416 
-0.340 
+0.138 
+2.243 
-0.040 
-0.265 
+0.429 
--U. 066 
+0.200 

0 
-0.020 
+0.422 
+0.289 
-0.103 
-0.053 
+0.148 
+0.116 
+0.629 
+ OS42 
-0.030 
-0.050 
10.165 
+0.195 
-0.091 
-0.089 
+0.059 

+0.444 
+0.325 
-0.077 
-0.095 
+0.154 
+0.014 
-0.042 
+0.518 
-0.010 
-0.061 
t0 .361 
+0.262 
-0.040 

0 

64 100 0.892 
66 105 0.632 
68 108 0.673 
70 113 0.242 
72 116 0.334 
74 117 0.781 
76 120 0.814 
78 125 0,520 
80 128 0,529 
82 129 0.907 
84 132 0.937 
86 137 0.695 
88 140 0.732 
YO 145 0.372 
92 148 0.439 
94 149 0.831 
96 152 0.863 
98 157 0.5Yl 

100 160 0.634 
102 16.5 0.093 
104 168 0.253 
106 169 0.747 
108 172 0.780 
110 177 0.468 
112 180 0.520 
114 181 0.877 
116 184 0.908 
118 189 0.656 
120 192 0.695 
122 196 0.559 
124 200 0.375 

t0.050 -0.050 
-0.050 +0.025 
-0.100 0 
+0.928 +0.424 
+0.850 +0.350 

0 -0.025 
+0.060 -0.025 
-0.355 +0.187 
-0.353 +0.095 
+0.100 -0.050 
+0.198 -0.061 
-0.262 +0.141 
1-0.189 -0.051 
+0.248 +0.325 
+0.192 +0.292 
+0.040 -0.025 
+0.040 -0.025 
-0.375 +0.239 
-0.160 +0.010 
+2.620 +0.631 
+1.350 +0.450 

0 0 
+0.059 -0.053 
-0.318 +0.221 

0 +0.125 
0 -0.025 

+0.040 -0.050 
-0.213 +0.053 

-0.200 +0.100 
+0.916 +0.044 

0 0 
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Figure 3. Samples of density maps obtained by direct Fourier transforms of the measured 
partial structure factors (with phases reconstructed). These maps are 2~ cuts of 3D atomic 
density, perpendicular to 5-fold (bottom) and 2-fold (top) axes, of the 3D partial atomic 
densities for AI and Mn as indicated. (Level 2 of the cut is given when relevant parameter 
for comparison.) A perspective view of one prolate rhombohedron has been drawn for 
the sake of illustrating the transition-metal subnetwork. Portions of chains made mof 
antisymmetric tetrahedra are visible in the aluminium density map. All scales are in A. 

very near the vertices of a 3DPT with 4.6 A edges. But the occupation fractions are very 
often smaller than 1. The two vertices at the short diagonals of the oblate rhombohedra, 
separated by 2.59 A, are scarcely occupied simultaneously by Mn atoms. From the 
examination of table 3 (or rather a more extended one not presented here for the sake 
of brevity), it appears that the major A1 sites are: 

(i) at vertices or near vertex positions shared with Mn atoms; 
(ii) near positions situated at 2.57 and 6.78 A from the vertices on the triad axis of 

the prolate rhombohedra (10.96 A for this triad axis and 13.55 A if an oblate rhombo- 
hedron is aligned properly); and 
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(iii) near positions on the faces, dividing the long diagonals of the rhombi into 
segments of 2.98 and 4.83 8, (7.81 A for the diagonal). 

Judging from the occupancy values p displayed in table 3, these different A1 sites 
apparently are never simultaneously occupied in a given rhombohedron of the ~ D P T .  
This is fortunate for obvious steric constraints and introduces a ‘chemical modulation’ 
of the structure which may be welcome to allow stability of the whole architecture. A 
schematic illustration of the corresponding decoration is shown in figure 4. The weak 
point in this procedure of a direct FT of the partial structure factors is obviously that the 
structure can actually be described only with an extensive list of atom coordinates, which 
is not very easy to manipulate. Moreover, possible spurious truncation effects are not 
easily detected. Thus, it might be sensible to analyse the structure in 6D first, in order to 
recover the hidden translational symmetry, and then, if necessary, generate the 3~ 
atomic decoration by projection or cut of the decorated 6~ structure. 

Looking back at equation (6) expressing the partial structure factors FAl(Q1,) and 
FT(Q1l) suggests that they can be considered as Q6-dependent since a well defined Q6 in 
the 6~ reciprocal space is attached to a given Ql , i.e. 

F A I @ ~ )  = ~ A I ( Q ~ ) ’ G A I < Q ~  F T ( Q ~ )  = ~ ~ ( Q ~ ) * G T ( Q - ) .  
When Fourier-transformed in 6~ space, these functions give the partial A1 and TM density 
distributions pAI(T6) and pT(r-6) convoluted with the respective acceptance functions 
A,,(Al) and A,,(TM). The result is of course a 6D periodic structure whose nodes are 
decorated by the above acceptance functions. Thus, two basic structural ingredients can 
be readily derived, i.e. the 6 0  coordinates of the sites and the corresponding acceptance 

t I 4  7.813 

Figure 4. Schematic presentation of the atomic decoration of half a prolate rhombohedron. 
0, Transition-metal site corresponding to node sites in 6D with a pseudo-spherical accept- 
ance function. 0, A1 sites on the long diagonals of the faces. A ,  AI sites on the triad axis. 
(0 and A correspond to node sites in 6D with a pseudo-spherical shell as an acceptance 
function.) x , AI sites on the triad axis corresponding to the body centres in 6D with a very 
fuzzy spherical distribution as an acceptance function. The decoration of the oblate 
rhombohedra is very similar to the one represented here except for the two types of triad 
axis sites which do not exist any more. As explained in the text, all these sites are partially 
occupied only; for instance, about half of the face sites of the oblate rhombohedra are 
empty and so are the triad axis sites of the prolate rhombohedron. 
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functions for each of the atomic species. Surprisingly enough what has emerged from 
calculations is a very simple, CsC1-like structure, as illustrated in figure 5, which presents 
2~ rational cuts of the 6D space containing one axis of each of the (R311, R31) subspaces. 

There is obviously only one atomic site for the TM atoms (figure 5 TM), very well 
located at the vertices of the 6D cubic lattice. The A31 acceptance function can be better 
illustrated with a 2D cut in the R3i subspace as shown in figure 6 .  This acceptance function 
exhibits an obvious spherical symmetry, with a fairly well defined density plateau in its 
central part. However, the borders of the strip are not sharp and do not define an all-or- 
nothing straight cut in the 6D space. If the density at the plateau is normalised to unity, 
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Figure 5.  Samples of 2D cut of the 6D periodic partial atomic densities. The transition- 
metal site is unique, at the nodes of the 6D cubic lattice; its acceptance function ‘decorates’ 
the site. There are two different aluminium sites, one at the nodes and the second one at 
the body centres, also ‘decorated’ with the pertinent acceptance functions. The cut sections 
of the 6D cubic unit cell are shown along with the coordinate axis of the cut. TM stands for 
the transition-metal atom sites, AIN and AIBC for aluminium node sites and body-centre 
sites, respectively. The A ~ B C  node shown here is the (3, t ,  4, ? , t ,  4)  one corresponding to 
Xi1 = 6.33, Ti= 7.82, Zi, = 3.92, X ,  = - 1.49, Y ,  = 4.82 and Z, = 2.42 (A). The axes are 
in A. 
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Figure 6.  Radial density (a )  and 2D projection 
( b )  of the A 3 _ ( ~ ~ )  acceptance function in R,,, 
showing its pseudo-spherical symmetry and the 
smoothing of its borders with resuect to a strict 

L 

-10 spherical cutting. 

the total integrated volume o ~ A ~ ~ ( T M )  is of the order of 0.9 X 4na3/3. This is about 87% 
of the volume of the triacontahedron that would result from the projection into R31 of 
the elementary 6D cubic unit cell. Within uncertainties due to truncation effects (see 3 4) 
this 87% is also the average occupancy fraction of the projected ~ D P T  vertices by the 
manganese (or TM) atoms [27]. 

There are two different sites for A1 atoms in 6~ (figures 5 A ~ N  and A~Bc).  One is 
located also at the 6D lattice nodes (N sites hereafter) and the other one is body-centred 
(f, f ,  f ,  f, 1,i) in 6~ (BC sites hereafter). 

The N sites have an acceptance function A,,(A~N) which can be roughly described 
as a spherical shell (figure 7). The inner sphere has a radius of about 1 . 0 5 ~  with a density 
of the order of 0.35 and the outer limit a radius of about 2a with a maximum occupancy 
ratio of 81% for the projected sites. The total integrated volume of A,,(A~N) is 
3.2 x 4xa3/3. 

The BC sites have an acceptance function A3,(A1~c) whose symmetry is still almost 
spherical but with a continuously decreasing density from its centre, and a total integrated 
volume of about 0.5 X 4na3/3 (figure 8). This volume is equal to 47% of the ideal 
triacontahedral acceptance function and gives the occupancy ratio of the A1 sites in 3~ 
that result from the projection of the 6~ BC sites. 

When considered altogether, the atomic decoration, deduced from the Fourier 
transform in 6~ of the measured partial structure factors, is perfectly consistent with 
the results of direct calculations in 3 ~ .  It is worth pointing out that the correspondence 
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-15 1 

Figure 7. Same representation as 
in figure 6 but for the AI node sites. 
The A , I ( A I ~ )  is clearly shell-like, 
with an inner almost excluded vol- 
ume corresponding roughly to 
A 3 L ( ~ ~ ) .  Borders show also a cer- 
tain fuzziness and anisotropy. 

between 6~ and 3~ densities is rather straightforward. As an example, the left bottom 
part of figure 5, showing a 2~ cut of the two different sites of the A1 sublattice, is very 
illustrative. This map contains among other things the fivefold axis [lzO],~ of the 
physical space. The atomic density in 3~ along this axis is readily obtained by measuring 
it directly in 6 ~ ,  that is by collecting the intersections of the [lzO]~i axis with the density 
features which show up in the map. Moreover, additional information has been gained 
with the determination of the volumes and shapes of the acceptance functions. The 
average site occupancy fractions are now fairly well known and appear as related to 
the topology of the strips which are cut in 6~ to generate the projected 3D structure. 
These strips may have waving features and/or rough surfaces, or even be constituted 
by a distribution of unconnected small clusters around a larger volume (figure 9). 
Consequently, the cross section of these strips into R31 may appear as spherical or 
almost spherical distributions with continuously changing density rather than the ‘one- 
inside/zero-outside’ elementary scheme. Such a ‘fuzziness’ in the strip definition is 
obviously the 6~ way to describe the ‘chemical modulation’ or occupancy modulation 
of the atomic sites in 3D and introduces a ‘controlled disorder’ that might explain 
diffuse scattering effects reported elsewhere [28,29]. However, truncation effects, as 
explained later in this paper, may also be responsible for a part of this ‘wall fuzziness’. 
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-10 c 

Figure 8. Same representation as in figures 6 
and 7 but for the A1 body-centre sites. The 
AI,,(AIBc) shows a pronounced maximum at its 
centre and induces a strong occupancy modu- 
lation for the corresponding sites projected into 
3D. 

Figure 9. 2D illustration of a multiple strip generation of a ID quasi-periodic structure. 
Fuzziness or roughness of the strip borders are accounted for by inclusion of 2D clusters 
into the acceptance functions which, in turn, generate ‘chemical modulation’ or ‘controlled 
disorder’ in the ID projected structure. 
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The occupancy fraction of the face sites by A1 atoms would correspond roughly to 
only half of these sites really being occupied at the faces of the oblate rhombohedron, 
which, combined with the occupancy of the triad axis sites, induce natural rules for 
matching the rhombic faces and forbid the existence of too short atomic distances. 

The concentration of each site in the material composition is directly proportional 
to the volume of its acceptance function, i.e. 0.9 for the TM atoms, 3.2 for the A ~ N  
and 0.5 for the A ~ B C  atoms. This gives a normalised formula A ~ & , A ~ ~ & T M Y ~ , ,  or 
A180.4~~19,6 .  The average density may also be evaluated by the total volume of the 
acceptance functions compared to the 6D unit cell; such an estimate gives = 0.07 
at.A-3 or 3.8 g cmP3. Both calculated composition and density are in better than good 
agreement with experimental values. 

It has to be stressed also that the present work quantifies for the first time the 
chemical and force constants disorder which was observed earlier in structural or 
dynamic studies of quasi-crystals [30-32]. 

4. Possible effects from truncation in the reciprocal space 

The point to be discussed now is the consequences on the calculated density of the 
experimental limitation of the accessible Q-range. 

In the Fourier analysis of periodic crystals, all the information on the perfect 
structure is contained in well defined ‘strong’ Bragg peaks whose intensity and number 
become rather weak at large Qil-values. Thus, the limitation in the accessible Qll-range 
(typically 8 A-’) has no drastic influence on the calculated density, beyond space 
resolution effects and fuzzy ripples within the background. On the other hand, Q, is 
not a relevant parameter for a periodic crystal. 

For quasi-periodic crystals, the range limitation in R$i has practically the same 
kind of acceptable effects as for periodic crystals. But there may be a much stronge1 
influence coming from the truncation in Q,. The diffraction pattern of a quasi-crystal 
(in 3 ~ )  is a pseudo-continuum of Bragg peaks and only the strong ones with relatively 
small lQ,l-values are actually measured. For instance, in the present study, the 
investigated Q-range corresponds to Qii S 8 and Q, S 1 (in 2 n / a  units) and contains 
in principle 283 independent diffraction peaks (8964 if multiplicities are taken into 
account), among which only 60 are actually measured. Had this Q-range been extended 
to Q ,  = 3, 5951 independent diffraction peaks (241714 with multiplicities!) would 
have been included. 

To illustrate the point, let the hypersurface A3* be simply a sphere of radius equal 
to a in the 3~ R31 complementary space, decorating the nodes of a 6~ primitive cubic 
lattice of parameter also equal to a. The g(Q,) function (FT of the A 3 J  has a spherical 
symmetry with an oscillatory profile as a function of IQ, 1 as shown in figure 10. If the 
very large Q,-values, corresponding to very weak diffraction peaks actually smeared 
out into a background, were effectively measured, the FT of the experimental g(QJ 
would of course restore the sphere A 3 ,  with a one-inside/zero-outside density profile 
as shown (broken line) in figure 11. Unfortunately, data are restricted to values of 
lQ,i typically smaller than 27c/a. The corresponding FT profile is also shown in figure 
11 (full curve). Thus, the truncation effects in R3, produce the expected ripples up 
to quite large r,-values but there is also an artificial ‘smoothing’ of the sphere wall, 
with a reduction of the profile density for 0.5a < r ,  < l a  and a significant density 
outside the hard original sphere to compensate; a sort of density depression is also 
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.---_ ..... 
Figure 10. Fourier transform of a spherical A31 

with the inner radius half the outer one (dotted 

0 
'. : . .  . .  . .  

'....'I 1 I hypersurface (full curve) and of a spherical shell 
1 2 

Q,(units of 2 x / a )  curve). 

created for r I  < 0 . 5 ~ .  It is easy to realise that reduction of the A31 density profile with 
respect to the sphere reduces the number of atoms in the cut density into R311 while 
increases or extension of this profile generate additional atoms. Of course, there is no 
rigorous way, in practice, to determine the contribution to the observed smoothness 
of the wall and depression of the plateau, which are really due to truncation effects. 
But clearly, spurious atomic positions in 3~ may come from these effects and one can 
get rid of them by reshaping the A3r functions issued from the FT in 6D of the diffraction 
data. 

1. 
I 

.. . .  o t  I?' 

I-' 

-10 -5 0 5 10 

r, ( A I  

Figure 11. Illustration of the Q, truncation effects. The density profile in R3L of a spherical 
A31 function (broken line) is compared to profiles calculated by Fourier transforms of the 
g(QJ function shown in figure 10 when cut at Q, = 1 x 2 n / a  (full curve) and Q, = 
3 x 2 n / a  (dotted curve). Ripples, depressions and smoothing are observed, which may 
generate spurious atomic positions in the 3D physical space. 
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Incidentally it is also interesting to realise that too crude diffraction data cannot 
give all the answers as far as the hypersurface A3L is concerned. The point is illustrated 
in figure 10 where two g(Q,) functions are shown: one corresponds to the sphere as 
explained above; the other to the same sphere but with an inner centred hole of radius 
0.52. Clearly the difference between the two will range within typical experimental 
accuracy. It is thus doubtful that 6D models, with decoration of the different 6~ sites 
by a thick spherical shell, would be completely derivable from a single set of diffraction 
data, without contrast variation measurements. Although not illustrated in this paper, 
it is easy to show that truncation effects are even more drastic on a spherical shell 
than on a sphere, with in particular the appearance of significant density in the normally 
empty central hole of the shell. 

5. Discussion and conclusions 

Using either a direct Fourier transform in 3~ of partial structure factors, with their 
phases reconstructed, or a description of the structure in 6~ prior to projection, we 
have been able to derive the atomic decoration with the correct density and composition 
corresponding to a A174Si5Mn21 quasi-crystal. Obviously this decoration, deduced 
rather directly from neutron diffraction data, differs quite deeply from the usually 
accepted scheme. The Mackay icosahedron no longer appears as the basic structural 
unit and some atomic arrangements are introduced which cannot be found in related 
crystalline compounds. 

The transition-metal atoms seem to form a well ordered subset with only one type 
of site well represented by the vertices of a ~ D P T  with edge length equal to about 4.6 A. 
The aluminium atoms are distributed in space with more fuzziness in their site 
specification. They are located roughly within four categories: some vertices; points 
at about 2.6 and 6 .8A from vertices on the triad axis of the prolate rhombohedra; 
points dividing the long diagonals of faces of both prolate and oblate rhombohedra 
into segments of about 3 and 4.8 A. In a given rhombohedron all these sites are never 
occupied simultaneously and actual positions are somewhat scattered around the 
average theoretical sites. Matching rules for the oblate and prolate rhombohedra are 
related to occupancy of the face and triad axis sites. There is no significant evidence 
for mid-edge sites for A1 atoms. 

Such a description is in fact not at all surprising. A rigid tiling model, with all the 
tiles decorated with strictly equivalent sites, cannot actually be accepted. Such a 
scheme would result in unstable structures due to the existence of incompatible bond 
angles and pair distances. The transition-metal substructure propagates the long-range 
ordering of the whole structure while the aluminium atoms introduce the necessary 
‘chemical modulation’ allowing stability as pointed out by Janssen [33]. The last 
question which might be raised concerns the positions of the silicon atoms and their 
obvious influence on the stability of the quasi-crystals with respect to relative crystals. 
A sensible assumption would be to locate these silicon atoms in the body-centred sites, 
on the grounds that these positions correspond to quite a small volume and may 
accommodate smaller atoms more easily [34]. However, the point has to be experi- 
mentally confirmed. 

Finally it is probably worth pointing out that the structure described in the present 
work is not a ‘model’: the atomic positions have been deduced from diffraction data 
without any of the crystal-chemistry assumptions that are usually used to build 
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‘reasonable’ structures. As such, the paper provides the first existing list of atom 
coordinates, even if several sources of inaccuracy have not been completely ruled out, 
such as, in particular, the real extent of spurious effects due to truncation in the Q, 
reciprocal space. 

A by-product of the present work might be the extension of the strip-projection 
method to generate ‘controlled disorder’, up to any wanted degree, by choosing 
appropriate ‘strips’, with rough surfaces, or including unconnected clusters in 6 ~ ,  or 
with waving shape . . . , etc. The point was already investigated in some detail by 
Divincenzo [35] to describe imperfect icosahedral solids but amorphous structures 
might gain something if such approaches were to be used. 
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